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This paper proposes an approach to changing the types of neuronal excitability via bifurcation control. A
washout filter-aided dynamic feedback controller is introduced to bifurcation dynamics of a two-dimensional
Hindmarsh-Rose type model neuron, which shows a saddle-node on invariant circle �SNIC� bifurcation from
quiescence to periodic spiking and then exhibits type-I excitability. At first, a Hopf bifurcation is created at a
desired parameter value before the SNIC bifurcation occurs, and then the criticality of the created Hopf
bifurcation is regulated by choosing appropriate values of the controller parameters. In this manner, the model
neuron starts to show type-II excitability. Therefore the type of neuronal excitability is transformed from type-I
excitability to type-II excitability for the model neuron via the washout filter-aided dynamic feedback control-
ler. In such a controller, the linear control gain is determined by the two basic critical conditions for the Hopf
bifurcation, i.e., the eigenvalue assignment and the transversality condition. We apply the center manifold and
normal form theory to deduce a closed-form analytic expression for the bifurcation stability coefficient, which
is a function with respect to the nonlinear control gain. A suitable nonlinear control gain is chosen to make the
bifurcation stability coefficient negative, and thus the criticality of the created Hopf bifurcation can be changed
from subcritical to supercritical. In addition, the amplitude of the corresponding periodic solution can be also
regulated by the nonlinear control gain.
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I. INTRODUCTION

Spiking neurons are classified into two types, namely
type-I excitability and type-II excitability according to the
frequency response characteristics of a neuron to a constant
current stimulation �1,2�. A neuron with type-I excitability is
characterized by a continuous FI �the firing frequency versus
the applied current� curve that shows oscillations starting
with an arbitrarily low frequency. The firing frequency varies
continuously from almost zero to a certain value with a wide
dynamic range as the applied current changes. In contrast, a
neuron with type-II excitability is characterized by a discon-
tinuous FI curve with the oscillations starting with a nonzero
frequency, and the response frequency range is narrow �1–4�.
For a neuron with type-I excitability there is an apparent
threshold for the appearance of spikes, while there is no true
threshold for a neuron with type-II excitability, rigorously
speaking �1,5�. Therefore there is a great difference in firing
behavior between them. Despite a large number of biophysi-
cal mechanisms, there are only two major dynamical mecha-
nisms underlying neuronal excitability observed frequently
in nature because of the codimension one bifurcation,
namely, the saddle-node on invariant circle �SNIC� bifurca-
tion and the Hopf bifurcation �HB� �5–7�. In general, the
former underlies type-I excitability, while the latter mediates
type-II excitability. Here, the Hopf bifurcation can be either
subcritical or supercritical.

Neuronal excitability is responsible for the translation of
synaptic input to the particular output function of a given

neuron, and directly attributable to the suite of ion channels
inserted into the membrane of the cell as well as the bio-
chemical properties and kinetics of those channels. Therefore
changes in neuronal excitability may occur through a variety
of means, including changes in passive membrane properties
�capacitances and resistances� or changes in voltage-
activated currents �8�. It is possible that mechanisms that
alter neuronal excitability lead to a kind of plasticity in re-
sponses to synaptic stimulation, ultimately affecting pro-
cesses such as learning and memory and other activity-
dependent forms of neural plasticity �8�. As is known,
normal aging subjects have difficulty learning hippocampus-
dependent tasks. The pronounced decrease in neuronal excit-
ability observed in hippocampal pyramidal neurons can be
an important cause for the age-related learning impairment
�9�. Actually, neuronal excitability plays a rather complicated
role in neurophysiological activities, and maintenance of
proper neuronal excitability is vital to nervous system func-
tion and normal behavior. On the other hand, activity-
dependent changes in neuronal excitability and synaptic
strength are thought to underlie memory encoding. Espe-
cially, in hippocampal CA1 neurons, small conductance
Ca2+-activated K+ �SK� channels contribute to the afterhy-
perpolarization, affecting neuronal excitability �10�. Neurons
are challenged with perturbations that can alter excitability,
including changes in cell sizes, innervation, and synaptic in-
put. In general, neurons have the ability to compensate for
these types of perturbations and maintain appropriate levels
of excitation �11�. Surprisingly, changes in neuronal excit-
ability also can have a stabilizing influence on nervous sys-
tem function �8�. Some neurons may respond to changes in
synaptic input or endogenous activity by altering their excit-
ability to maintain a given firing pattern or a firing rate. For*yxie@mail.xjtu.edu.cn
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example, a pacemaker neuron that experiences a decrease in
synaptic drive may independently increase its own excitabil-
ity by up-regulating depolarizing conductances in order to
maintain a fixed level of firing output �8�. In this study, we
change the types of neuronal excitability via bifurcation con-
trol, and expect that our control method can make neuronal
excitability change from abnormal to normal under some
situation and thus regulate abnormal firing behavior of neu-
rons by a dynamic feedback controller.

Bifurcation control refers to the task of designing a con-
troller to modify the bifurcation properties of a given nonlin-
ear system, thereby achieving some desirable dynamical be-
havior �12�. The potential applications of bifurcation control
have been widely reported in various fields, such as regulat-
ing human heart rhythms and neuronal firing behavior
�13,14�, controlling the high angle-of-attack flight dynamics
�15�, reducing vibration of hard drives �16�, and designing an
alert system for impending voltage collapse and catastrophe
in power systems �17�. Generally, bifurcation control has
many different types of tasks, such as delaying the onset of
an inherent bifurcation, relocating existing bifurcation
points, modifying the shape or type of a bifurcation solution,
creating a desired type of bifurcation at preferable parameter
values, stabilizing a bifurcated periodic solution or branch,
and optimizing the system performance near a bifurcation
point �12�. At present, representative approaches of bifurca-
tion control include washout filter-aided dynamic feedback
�18�, linear or nonlinear state-feedback �19,20�, harmonic
balance approximation �21�, and quadratic invariants in nor-
mal forms �22�.

As mentioned above, changes in types of neuronal excit-
ability actually imply changes in dynamical mechanisms un-
derlying neuronal excitability, that is, variation in types of
bifurcation. Specifically, we convert type-I excitability into
type-II excitability by a washout filter-aided dynamic feed-
back controller. In other words, such a controller is adopted
for the creation of a Hopf bifurcation before the occurrence
of a SNIC bifurcation. It is known that static state feedback
does not apply to problems where the dynamics and the tar-
geted operating point are uncertain �23�. Moreover, static
state feedback changes the operating conditions of the open-
loop system. This may result in waste of control energy and
also induce degradation of system performance. Fortunately,
washout filters can overcome these difficulties. In fact, a
washout filter is a high pass filter that washes out steady state
inputs, while passing transient inputs �20�. The use of wash-
out filters ensures that all the equilibrium points of an open-
loop system are preserved in the closed-loop system; namely,
their locations are not changed. Recently, it has been re-
ported that the washout filters can be applied for the creation
of Hopf bifurcations in continuous-time systems �24�. In ad-
dition, washout filters facilitate automatic following of tar-
geted operating points, which results in vanishing control
energy once stabilization is achieved and a steady state is
reached.

In this paper, a two-dimensional Hindmarsh-Rose �HR�
type model �4� is utilized as a model neuron because it not
only can exhibit type-I excitability under appropriate values
of parameters but also possesses a set of simple expression
formulas. It is well-known that a Hopf bifurcation occurs

with basic critical conditions, i.e., the eigenvalue assignment
and the transversality condition �25,26�. Since such two ba-
sic critical conditions can be merged into a simple algebraic
form, the implicit criterion is preferable for derivation of an
analytical solution for the control gains without direct ana-
lytical computation of the eigenvalues as functions of the
control gains, which is sometimes considerably difficult or
even impossible for high-dimensional systems �24,27�.
Through a coordinate transformation we convert the closed-
loop system into a canonical form and then obtain a closed-
form analytic expression for the bifurcation stability coeffi-
cient by application of the center manifold and normal form
theory.

The paper proceeds as follows. In Sec. II, we describe the
two-dimensional HR neuronal model and describe its dy-
namics. For such a model neuron a Hopf bifurcation is cre-
ated via a washout filter-aided controller at a desired param-
eter value according to the two basic critical conditions, thus
transformation of type-I excitability into type-II excitability
is achieved in Sec. III. In Sec. IV, we derive a closed-form
analytic expression for the bifurcation stability coefficient as
a function of control gains, and then change the created Hopf
bifurcation from subcritical to supercritical. Some conclu-
sions are drawn in Sec. V.

II. TWO-DIMENSIONAL HINDMARSH-ROSE TYPE
MODEL AND ITS DYNAMICS

The two-dimensional HR type model was analyzed by
Tsuji et al. �4� as a neuronal model. It is described by the
following equations:

dx

dt
= c�x −

x3

3
− y + z� ,

dy

dt
=

x2 + dx − by + a

c
,

where x and y denote the cell membrane potential and a
recovery variable, respectively. a ,b ,c ,d, and z are param-
eters. In particular, z represents the external stimulus. Bifur-
cation behavior of this model has been explored in detail �4�.

Under a set of parameter values, namely, a=0.42, b=1.0,
c=3.0, and d=1.8, the neuron exhibits type-I excitability as
the external stimulus z changes, as shown in Fig. 1. Figures
1�a� and 1�b� correspond to the bifurcation diagram and the
firing frequency versus the applied current, respectively.
There is a SNIC bifurcation at z=0.3463, where the neuron
model generates the SNIC bifurcation from quiescence to
firing. A subcritical Hopf bifurcation occurs at z=2.3420.
Note that the firing frequency varies continuously from al-
most zero. All bifurcation diagrams in this paper were pro-
duced using the software package XPPAUT, which is software
for the analysis and simulation of dynamic systems and can
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trace the steady states and periodic solutions irrespective of
whether they are stable or unstable �28�.

III. TRANSFORMATION OF TYPE-I EXCITABILITY
INTO TYPE-II EXCITABILITY

In this section, we introduce a Hopf bifurcation at z0
=−0.5 via a washout filter-aided dynamic feedback control-
ler. This makes neuronal excitability change from type-I ex-
citability into type-II excitability.

In continuous-time systems, the transfer function of a
typical washout filter is given as follows �23�:

G�s� =
y�s�
x�s�

=
s

s + df
= 1 −

df

s + df
,

where df is the reciprocal of the filter time constant which is
positive for a stable filter and negative for an unstable filter.
With the following notation,

w�s� =
1

s + df
x�s� ,

the equation of the state variable w of the filter can be written
as

dw

dt
= x − dfw .

The benefits of applications of washout filters are to preserve
the equilibrium structure of the open-loop system as well as
to save control energy. Here, we only use one washout filter
associated with membrane potential x. The membrane poten-
tial is chosen as an input to the washout filter because it can
be readily measured, and the controller can be realized eas-
ily. The equations of the two-dimensional HR model with a
dynamic feedback controller through a washout filter are
given as follows:

dx

dt
= c�x −

x3

3
− y + z� + u ,

dy

dt
=

x2 + dx − by + a

c
,

dw

dt
= x − dfw ,

u = g�v�, v = x − dfw ,

where df �0 such that the washout filter is stable. In this
paper, we set df =0.1. v is the output function of the washout
filter.

For the above closed-loop system, in addition to the cre-
ation of a Hopf bifurcation, our controller can be designed to
control the criticality of the bifurcation as shown in the next
section. It is well-known that only the quadratic and cubic
terms in a nonlinear system generating a Hopf bifurcation
influence the bifurcation stability coefficient �19,26�. In order
to simplify the choice of control parameters, however, we
represent our controller in the following simple form with
only a linear term and a cubic term:

u = Kl�x − dfw� + Kn�x − dfw�3.

Note that introduction of the washout filter to the two-
dimensional HR model does not affect the equilibrium struc-
ture of the original system during a control process. As we
shall see later, the linear control gain Kl determines two basic
critical conditions, but has no effect on the criticality of the
bifurcation because of no contribution to the bifurcation sta-
bility coefficient; the nonlinear control gain Kn, on the other
hand, controls the criticality of the bifurcation, but has no
influence on the locations of equilibrium points.

Suppose that a Hopf bifurcation is created at a desired
parameter value z0=−0.5 before the emergence of the SNIC
bifurcation. For the closed-loop system it has only one
equilibrium point at z0=−0.5, namely, �x0 ,y0 ,w0�
= �x0 ,y0 ,x0 /df�= �−2.481 04,2.109 68,−24.8104�. The Jaco-
bian matrix of the closed-loop system is given as follows.

FIG. 1. Type-I excitability. �a� The bifurcation diagram of the
HR type model with type-I excitability. The thick solid lines denote
stable steady states, while the dotted line shows unstable equilib-
rium points. The thin lines represent the maximum and minimum
values of stable limit cycles, and the dashed lines are the maximum
and minimum values of unstable limit cycles. The captions of all
the other bifurcation diagrams in this paper are the same as this
caption. �b� The firing frequency versus the applied current.
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�
c�1 − x2� + Kl + 3Kn�x − dfw�2 − c − Kldf − 3Kn�x − dfw�2df

2x + d

c
−

b

c
0

1 0 − df

� .

It is clear that the nonlinear control term has no influence on
the Jacobian matrix at the equilibrium point. Thus the Jaco-
bian matrix becomes

�
c�1 − x2� + Kl − c − Kldf

2x + d

c
−

b

c
0

1 0 − df

� .

The corresponding characteristic equation has the following
form:

p0�3 + p1�2 + p2� + p3 = 0,

where

p0 = 1,

p1 = df +
b

c
− c + cx2 − Kl,

p2 =
bdf − bKl

c
− dfc + dfcx2 + 2x + d − b + bx2,

p3 = df�2x + d − b + bx2� .

If a Hopf bifurcation occurs, the Jacobian matrix of the
closed-loop system must satisfy the basic critical conditions
�25,26�. One is the eigenvalue assignment. Namely, the char-
acteristic equation has a pair of pure imaginary eigenvalues

�1=�0i and �2= �̄1=−�0i, and the other eigenvalues have
negative real parts at z0=−0.5. The other is the transversality
condition. That is, the eigenvalues �1 and �2 cross the imagi-
nary axis with some nonzero speed at the Hopf bifurcation
point �x0 ,y0 ,w0 ;z0�. To avoid solving directly all eigenval-
ues, we employ a more convenient and efficient algorithm
criterion for detecting the existence of Hopf bifurcations,
which is on basis of the Routh-Hurwitz stability criterion and
described by the coefficients of the characteristic equation
instead of eigenvalues �27�.

In this way, the eigenvalues assignment corresponds to the
following conditions.

p3 � 0,

�1 = p1 � 0,

�2 = 	p1 p0

p3 p2
	 = 0.

Substituting the parameter values and the location of the
equilibrium point, we can get

p3 = 0.199 35 � 0,

Kl � 15.900 00,

Kl
2 − 26.620 42Kl + 169.856 70 = 0.

There are two solutions for the above equation, namely, Kl
=16.012 99 and 10.607 43. Apparently, only Kl=10.607 43
meets the eigenvalue assignment. Next, we examine if Kl
=10.607 43 satisfies the transversality condition, which is
written as

	 ��2

�z
	 = − 62.035 10 + 4.721 79Kl � 0,

namely Kl � 13.138 04.

Apparently, Kl=10.607 43 satisfies the transversality condi-
tion. As a result, we take Kl=10.607 43 according to the two
basic critical conditions for the occurrence of the Hopf bifur-
cation. For a while, let Kn=0, then the bifurcation diagram of
the closed-loop system is shown in Fig. 2�a�. As expected, a
Hopf bifurcation is created at z0=−0.5. At the same time, the
right Hopf bifurcation is moved to z=9.656. Notice that the
created Hopf bifurcation here is subcritcial. Figure 2�b�
shows the firing frequency versus the applied current, which
starts with a nonzero frequency. Thus we have made the
neuronal excitability change from type-I excitability to
type-II excitability.

IV. CONTROL OF CRITICALITY OF HOPF BIFURCATION

Since the created Hopf bifurcation is subcritical at z0
=−0.5, there is a bistable range in which the neuron exhibits
either quiescence or repetitive firing �periodic spiking�. This
results in the occurrence of jump behavior between quies-
cence and repetitive firing. We can control the criticality of
the created Hopf bifurcation by the nonlinear control term.

At a small neighborhood of a Hopf bifurcation point the
bifurcated periodic solution of the limit cycle has the ampli-
tude of O���, here �=
�z−z0�. The asymptotic stability of
such a periodic solution is governed by one characteristic
exponent given by a real smooth even function ����=�2�2

+�4�4+¯. If �����0, the periodic solution is asymptoti-
cally stable, otherwise it is unstable. From the expression of
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����, typically, it can be seen that the local stability of the
bifurcated periodic solution, namely, the criticality of the bi-
furcation, is determined by the sign of �2, which is called the
bifurcation stability coefficient. In what follows, we apply
the center manifold and normal form theory to derive the
closed-form analytic expression for �2.

As seen above, after determining the linear control gain
Kl=10.607 43 according to the two basic critical conditions
for the Hopf bifurcation, the Jacobian matrix of the closed-
loop system becomes a constant matrix. Therefore we can
numerically compute all eigenvalues of the matrix and their
corresponding eigenvectors. In fact, this is a necessary step
in deriving the analytic expression for �2 with respect to Kn
in order to employ the center manifold and normal form
theory.

The constant matrix is

�− 4.859 23 − 3.0 − 1.060 74

− 1.054 03 − 0.333 33 0.0

1.0 0.0 − 0.1
� .

The eigenvalues and their corresponding eigenvectors are

�1 = − 1.162 41 	 10−10 + 0.194 08i ,

�2 = − 1.162 41 	 10−10 − 0.194 08i ,

�3 = − 5.292 56,

and

v1 = � 0.084 41 + 0.163 81i

− 0.424 57 − 0.270 80i

0.844 07
�, v2 = v̄1,

v3 = �− 0.961 25

− 0.204 31

0.185 12
� .

Here, i is the imaginary unit. Due to very small real parts of
�1 and �2, the matrix can be considered to have a pair of pure
imaginary eigenvalues. Another is a negative eigenvalue. For
notational simplicity, let �0=Im��1�=0.194 08 and M
=�3=−5.292 56. We construct a matrix P as follows:

P = �Re�v1�,− Im�v1�,v3� .

Here, Re and Im mean extracting the real part and the imagi-
nary part of a complex-valued expression, respectively.

That is

P = � 0.084 41 − 0.163 81 − 0.961 24

− 0.424 57 0.270 80 − 0.204 30

0.844 07 0.0 0.185 12
� .

Taking the following coordinate transformation,

� x

y

w
� = � x0

y0

w0
� + P�X

Y

W
� ,

we can obtain

� x

y

w
� = �− 2.481 04 + 0.084 41X − 0.163 81Y − 0.961 24W

2.109 68 − 0.424 57X + 0.270 80Y − 0.204 30W

− 24.810 39 + 0.844 07X + 01.851 2W
� .

Substituting the coordinate transformation into the closed-
loop system, and then making the following transformation,
we can get a system under a new coordinate system as fol-
lows:

�
dX

dt

dY

dt

dW

dt

� = P−1�
dx

dt

dy

dt

dw

dt

� = �F1�X,Y,W�
F2�X,Y,W�
F3�X,Y,W�

� ,

where P−1 is the following inverse matrix of P:

FIG. 2. Type-II excitability. �a� The bifurcation diagram of the
closed-loop system with only the linear control term Kl

=10.607 43. �b� The firing frequency versus the applied current.

CHANGE IN TYPES OF NEURONAL EXCITABILITY VIA… PHYSICAL REVIEW E 77, 021917 �2008�

021917-5



P−1 = � 0.209 47 0.126 71 1.227 53

− 0.392 15 3.455 58 1.777 37

− 0.955 09 − 0.577 77 − 0.195 11
� .

At �X ,Y ,W�= �0,0 ,0� the Jacobian matrix of the new system
is

�− 1.0 	 10−10 − 0.194 08 3.0 	 10−9

0.194 08 0.0 − 1.0 	 10−9

0.0 0.0 − 5.292 56
� .

We can regard the Jacobian matrix as the following matrix of
the real canonical form by ignoring very small entries,

� 0.0 − 0.194 08 0.0

0.194 08 0.0 0.0

0.0 0.0 − 5.292 56
� .

As a result, the Jacobian matrix of the new system has the
following property:

��
�F1

�X

�F1

�Y

�F1

�W

�F2

�X

�F2

�Y

�F2

�W

�F3

�X

�F3

�Y

�F3

�W

��
�0,0,0�

= � 0 − �0 0

�0 0 0

0 0 M
� .

Here, we can apply the center manifold and normal form
theory to derive the analytic expression for the bifurcation
stability coefficient �2. In fact, by following the procedures
provided in �29�, the bifurcation stability coefficient has a
unified expression, regardless of the detailed form of the
transformed system with a real canonical form, as follows:

�2�Kn� = 2 Re�g20�z0�g11�z0� − 2�g11�z0��2

−
1

3
�g02�z0��2� i

2�0
+

g21�z0,Kn�
2

� ,

where

g20�z0� =
1

4
 �2F1

�X2 −
�2F1

�Y2 + 2
�2F2

�X � Y

+ i� �2F2

�X2 −
�2F2

�Y2 − 2
�2F1

�X � Y
�� ,

g11�z0� =
1

4
 �2F1

�X2 +
�2F1

�Y2 + i� �2F2

�X2 +
�2F2

�Y2 �� ,

g02�z0� =
1

4
 �2F1

�X2 −
�2F1

�Y2 − 2
�2F2

�X � Y

+ i� �2F2

�X2 −
�2F2

�Y2 + 2
�2F1

�X � Y
�� ,

g21�z0,Kn� = G21�z0,Kn� + 2G110s11 + G101s20,

G21�z0,Kn� =
1

8
 �3F1

�X3 +
�3F1

�X � Y2 +
�3F2

�X2 � Y
+

�3F2

�Y3

+ i� �3F2

�X3 +
�3F2

�X � Y2 −
�3F1

�X2 � Y
−

�2F1

�Y3 �� ,

G110 =
1

2
 �2F1

�X � W
+

�2F2

�Y � W
+ i� �2F2

�X � W
−

�2F1

�Y � W
�� ,

G101 =
1

2
 �2F1

�X � W
−

�2F2

�Y � W
+ i� �2F1

�Y � W
+

�2F2

�X � W
�� ,

s11 = − h11/M ,

s20 = − h20/�M − 2i�0� ,

h11 =
1

4
� �2F3

�X2 +
�2F3

�Y2 � ,

h20 =
1

4
� �2F3

�X2 −
�2F3

�Y2 − 2i
�2F3

�X � Y
� .

As above, all derivatives take their values at �X ,Y ,W ;z0�
= �0,0 ,0 ;−0.5�. In this way, we obtain closed-form analytic
expression for �2 as follows:

�2 = 0.225 27 	 10−1 + 2 Re�0.646 45 	 10−3Kn

+ i0.345 31 	 10−3Kn� .

If Kn is a real number with Kn�−17.423 57, �2�0. As a
consequence, Kn�−17.423 57 ensures that the periodic so-
lution bifurcated from the Hopf bifurcation is asymptotically
stable, and then makes the Hopf bifurcation change from
subcritical into supercritical. In contrast, if Kn�−17.423 57,
then �2�0, and the created Hopf bifurcation is subcritical.

Let us investigate change of bifurcation behavior in the
two cases of Kn�−17.423 57 and Kn�−17.423 57, respec-
tively, to verify the accuracy of our analytic expression for
�2. Let Kn=−20 and −15.0, respectively. When Kn=−20, the
bifurcation diagram is shown in Figs. 3�a� and 3�b�. Figure
3�b� is an enlargement of Fig. 3�a� near the created Hopf
bifurcation point. From Fig. 3�b�, it is clear that the created
Hopf bifurcation is supercritical. Thus we can make the cre-
ated Hopf bifurcation supercritical via the nonlinear control
term with Kn=−20. Figure 4 shows the bifurcation diagram
with Kn=−15.0. Figure 4�b� is an enlargement of Fig. 4�a�
near the created Hopf bifurcation point. Apparently, the cre-
ated Hopf bifurcation is still subcritical. Further, it can be
seen that there is a common characteristic between Figs. 3
and 4. Namely, the structure and locations of the equilibrium
points are not changed. Also, the bifurcation points of the left
�created� and the right Hopf bifurcations are not varied. The
bifurcation value of the left HB is z=−0.5, while that of the
right HB is z=9.656. In other words, the nonlinear control
term only exerts an influence on the criticality of the bifur-
cations, namely, the bifurcation stability coefficient, but no
effect on the structure and locations of the equilibrium
points. Actually, these features can be seen from their calcu-

XIE, AIHARA, AND KANG PHYSICAL REVIEW E 77, 021917 �2008�

021917-6



lation processes and expressions. When z=−0.47, −0.425,
and 1.5, the neuron exhibits, respectively, a subthreshold os-
cillation, repetitive spiking, and a superthreshold oscillation
with a small amplitude, as shown in Fig. 3�c�.

By transforming the type of the Hopf bifurcation from
subcritical to supercritical, the bistability near the created
Hopf bifurcations is eliminated and thus the occurrence of

jumping behavior between periodic spiking and quiescence
of the closed-loop system under perturbation is prevented.

In addition, we can obtain an additional property by com-
puting the bifurcation diagram with Kn=−50. Due to Kn
�−17.423 57, the created Hopf bifurcation is supercritical,
as shown in Fig. 5. It can be clearly seen that the amplitude
of the limit cycle is decreased by increasing the absolute
value of the nonlinear control gain from Figs. 4 to 3 and 5,

FIG. 3. The bifurcation diagram and time series of the closed-
loop system with Kl=10.607 43 and Kn=−20.0. �a� The bifurcation
diagram, and �b� is an enlargement of �a� near the left Hopf bifur-
cation point. �c� Time series of the membrane potential correspond,
respectively, to z=−0.47, −0.425, and 1.5 from top to bottom.

FIG. 4. The bifurcation diagram of the closed-loop system with
Kl=10.607 43 and Kn=−15.0. �a� The bifurcation diagram, and �b�
is an enlargement of �a� near the left Hopf bifurcation point.

FIG. 5. The bifurcation diagram of the closed-loop system with
Kl=10.607 43 and Kn=−50.0.
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which implies that one can control the amplitude of oscilla-
tion using the washout filter-aided controllers with nonlinear
terms.

V. CONCLUSIONS

To sum up, from the viewpoint of bifurcation control, the
type of neuronal excitability has been changed from type-I
excitability to type-II excitability via a washout filter-aided
dynamic feedback controller in the two-dimensional HR type
model neuron. We have created a Hopf bifurcation at a de-
sired parameter value, which is located before a SNIC bifur-
cation, according to the two basic critical conditions for the
occurrence of the Hopf bifurcation: the eigenvalue assign-
ment and the transversality condition. Through these two
conditions we have determined the linear control gain Kl. We
have applied the center manifold and normal form theory to
derive the closed-form analytic expression for the bifurcation
stability coefficient �2, which is a function of the nonlinear
control gain Kn. If the chosen value of Kn makes the bifur-
cation stability coefficient �2 negative, the periodic solution,
emanated from the created Hopf bifurcation, is stable, and
then the Hopf bifurcation is supercritical. Therefore accord-
ing to the criterion of the criticality of the Hopf bifurcation,
we can choose an appropriate Kn to make the criticality of

the created Hopf bifurcation change from subcritical to su-
percritical. Moreover, the application of washout filters is
capable of preserving the equilibrium structure of the open-
loop system as well as saving control energy. In the designed
washout filter-aided dynamic feedback controller, the linear
control gain underlies the critical conditions of the created
Hopf bifurcation, and then determines the location of the
Hopf bifurcation. The nonlinear control gain, on the other
hand, governs the criticality of the Hopf bifurcation, and also
regulates the amplitude of the periodic solution. Actually, the
dynamic feedback controller is equivalent to a dynamically
applied current, which can be injected into a given neuron,
e.g., by a microelectrode. In the present paper, we have pre-
sented an approach to change the types of neuronal excitabil-
ity via bifurcation control and regulate firing behavior of a
model neuron. Our control method may have potential im-
plications in suppression of undesired neural oscillations that
occur in the brain.
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